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A B S T R A C T  

We answer a question posed by B, Sims in 1972, by exhibiting an example 

of a Banach space X such that the numericM radius attaining operators on 
X are not dense. Actually, X is an old example used by J. Lindenstraus8 
to solve the analogous problem for norm attaining operators, but the proof 

for the numerical radius seems to be much more difficult. Our result was 

conjectured by C. Cardassi in 1985. 

I n t r o d u c t i o n  

Recall the definition of the n u m e r i c a l  r a n g e  V ( T )  of a bounded linear operator 

T on a Banach space X. It is given by 

V ( T )  = { x * ( T x ) : x  • X , x *  • X*,IIx* H = IIxII = z*(x) = 1} 

where X* denotes the dual space of X.  This is an old notion going back to O. 

Toeplitz [21], who defined in 1918 the numerical range of an operator on the 

euclidean n-space, his definition being meaningful for operators on an arbitrary 

Hilbert space. General information on the numerical range of an operator on 

Hilbert space can be found in the book by P. Halmos [15]. The extension to 

Banach space operators was done in 1961-62 by G. Lumer [17l and F. Bauer [4]. 

A systematic discussion of numerical ranges of operators on Banach spaces, em- 

phasizing the connections with spectral theory of operators and general Banach 

algebra theory, can be found in the books by F. Bonsall and J. Duncan [7,8]. For 
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more condensed information the reader is referred to the survey article by the 

same authors [9]. 

The numerical  radius of T is defined by 

v(T)  -- sup{l~]  : A E V(T)} 

and v is clearly a seminorm on the operator space L(X) satisfying that v(T) <_ 
IITI[ for all T. It is said that T a t ta ins  its numerical  radius when the supre- 

mum defining v(T) is actually a maximum and we will denote by R(X) the 

set of numerical radius attaining operators on X. If X is finite dimensional, 

one has clearly that the numerical range of any operator on X is compact, so 

R(X) = L(X) in this case. Even in separable Hilbert space it is easy to find 

a diagonal self-adjoint operator which does not attain its numerical radius. In 

his dissertation [20], B. Sims proved that every self-adjoint operator on a Hilbert 

space can be approximated in norm by numerical radius attaining self-adjoint 

operators, and he posed the general problem if R(X) is norm-dense in L(X) for 

any Banach space X. Partial at~irmative answers to this question have been ob- 

tained by I. Berg and B. Sims [5], C. Cardassi [10,11,12,13] and M. Acosta and 

the author [2]. The fact that R(X) is dense in L(X) when X has the Radon- 

Nikodym property [3], which includes the results in [2,5,12] seems to be the most 

relevant in this direction. 

The purpose of this paper is answering the general question to the negative, 

by exhibiting a Banach space X such that R(X) is not dense in L(X). Actually 

we show that the Banach space used by J. Lindenstrauss in [16] to show that the 

norm attaining operators from a Banach space into itself need not be dense, also 

does the job for the numerical radius. More concretely, let Y denote the space 

co provided with the strictly convex norm [. [ given by 

where I1" II is the usual norm on co and y(n) is the nth term of the sequence y E Y. 

Now consider the space X - Y ~oo co, where co carries its usual norm and we 

put the maximum norm on the direct sum. We will prove that R(X) is not dense 

in L(X). This result was conjectured by C. Cardassi in [10]. Our proof is rather 

technical and it makes essential use of some ideas concerning radial derivatives 
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of the norm which are always in close connection with numerical range problems. 

However, as far as we know, these techniques are applied for the first time to 

deal with numerical radius attaining operators. 

The strong parallelism between norm attaining and numerical radius attaining 

operators can not be ignored. It clearly arises from the above mentioned partial 

answers to Sims problem, but the present counterexample points in the same 

direction. Let us remark some similarities and differences between both kinds 

of problems. Note that an operator T attains its norm if and only if there 

are xo G X,x~ E X*, with ][x0[[ = IIx~[[ = 1 such that Ix~(Tz0)l = IITll, so 

we have the problem of maximizing a certain function on the product of the 

unit spheres of X and X*. When dealing with the numerical radius, the sarae 

optimization problem is constrained by the condition x~ (x0) = 1 and the function 

to be maximized is only considered on the fairly more complicated set 

H ( X )  = { ( x , x ' )  e X × X * :  Ilxll = IIx*ll = = X} 

Only for very special spaces X the set II(X) is well known and this is probably 

the reason why the arguments dealing with the numerical radius are usually more 

involved than the corresponding arguments for the norm. 

If an operator T satisfies v(T) = tiTit and T attains its numerical radius, then 

it dearly attains its norm as well. However, it is not difficult to give an example 

of an operator T on the space 12 such that v(T) = [[T[[, T attains its norm but 

not its numerical radius. On the other hand, if v(T) < [[T[[ , then T may attain 

its numerical radius while not its norm. For these and related examples showing 

that both optimization problems are independent we refer to [1]. Let us finally 

remark the main difference between both problems. The numerical range only 

makes sense for operators from a Banach space into itself. In particular we can 

not imagine what could be the numerical radius counterpart of the celebrated 

properties A and B, introduced by J. Lindenstrauss in [16]. 

1. P r e l i m i n a r y  r e s u l t s  

The closed unit ball and the unit sphere of a (real or complex) Banach space X 

will be denoted by B x  and Sx  respectively, X* will be the dual space and L(X)  

the Banach space of bounded linear operators on X. For T E L(X) ,  T* will be 

the adjoint operator. Given u E Sx ,  the set of normalized support functionals 
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for B x  at u will be denoted by D(X, u), or simply D(u) if X is clear from the 

context. Thus, 

D(u) = {z* 6 Sx. : z*(u) = I} 

This is a nonempty, convex and w*-compact set and, for z 6 X we will write 

r(u ,x)  = max{Re x*(z) : x* 6 D(u)} 

It is an old result, due to S. Mazur (see [18] or [14; Theorem V.9.5]), that r(u,  z) 

is the right derivative of the norm at the point u in the direction of z, that is 

r (u ,z )  = lira Ilu + txll - 1 
t-,O+ 

As a function of x, r is subad~tive, 

~(u, xl +x2) < ~(x,)+~(~2) (x,,~2 e x )  

and it follows that r is also continuous in the second variable, in fact 

It(x1) - r(z=)l <- II ~, - z=ll (z , ,z~ • X) 

We will use the following easy extension of Mazur's result, a "chain rule" involving 

norm derivatives. 

LEMMA 1.1 (19; Lemma 1.6): Let F be a function defined on the reM interva/ 

[0, 6] with va/ues ha the Banach space X.  Assume that F(O) ~ 0 and that F is 

differentiable at the origin. Then the tea//'unction G defined by 

G ( t )  = IIF(t)ll (0 _ t < 6) 

is differentiable at the origin and 

(F(0) F'(0)). 
G' (0 )  --  r \ IIF(0)II ' 
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The numerical range of an operator T • L(X) is given by 

V(T) = {x*(T:c): (x,~*) • n ( x ) }  

where 

n ( x )  = {(x,:c*) • Sx x Sx. : :c* • D(:c)} 

The numerical radius of T is then given by 

v(T) = sup{[A[ : A • V(T)} 

and we say that T attains its numerical radius if I:c;(T:co)l = v(T) for some 

(:co, :c~) • II(X). R(X) will be the set of numerical radius attaining operators 

o n  X .  

The Banach space X we are interested in has the form X = Y (900 Z where 

Y, Z are Banach spaces and we use the symbol (900 to indicate that we take the 

maximum norm on the direct sum, 

Ily + zll = max{llyll,  11~11} (y • g ,z  • z )  

Several easy facts concerning numerical ranges of operators on such a space X 

are collected together in the following statement. 

LEMMA 1.2: Let Y,  Z be Banach spaces, X = Y (9ooZ and P, Q the projections 
from X onto Y,  Z respectively. For T • L(X) we have 

i) v(T) = max{v( PT), v( QT) }. 

ii) I f T  • R(X) and v(PT) > v(QT), then PT • R(X). 

iii) v(PT) = sup{Iy*(PT(y + z)) t :  (y,y*) • II(Y),z • Bz}  and PT  • R(X) if  
and only if  this supremtun is attained. 

Proof: Note that the adjoint projections P* and Q* are complementary L- 

projections, that is, 

IIx*l[ = I[P*~*ll + IIQ*:c*ll (:c* • x * )  

It follows easily that 

D(x) = co ([D(x) n P*(X*)] u [D(x) n Q*(x*)])  

for all x in Sx, where "co" denotes convex hull. 
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To prove  i), fix (x, x*) • I I ( X )  and  write x* = (1 - r)u* + rv* with 0 < r < 1, 

u*,v* • D(x), P*(u*) = u*, Q*(v*) = v*. If  ei ther  D(x) N P*(X*) = 0 or 

D(x) N Q*(X*) = 0, we s imply  take r - 1 or r = O. In any case we have 

Ix*(Tx)[ = I(1 - r)u*(PTx) + rv*(QTx)[ <_ 

_< (1 - r)v(PT) + rv(QT) <_ max{v(PT), v(QT)} 

and  we have shown tha t  

v( T) < max { v( PT), v( QT) }. 

To s~ ,  for e x ~ p l e ,  that ,(PT) _< , ( T ) ,  assume that Ix*(PTx)l > 0 with 

(x,x*) E II(X). Then  0 < liP*x'l]  _< 1 and ~ E D(x), so 

I P'z* Ix*(PTx)] = ][P*x*](Tx)] < ~ ( T z )  < v(T), 

and v(PT) < v(T), as required. 

To prove  ii), let (x,x*) E II(X) be such tha t  

[x*(Tx)l = v(T) = v(PT) > v(QT). 

Since [x*(QTx)[ < v(QT) < [x*(Tx)[, we have x*(PTx) # O, so P'x* # O. We 

claim tha t  P'x* = x*. Otherwise  we would have u* := ~ e n ( x )  and  

v* := ~ 6 D(x) ,  so 
IIQ'x'll 

]x*(Tx)l = ]]P*x*H ]u*(PTx)] + ]IQ*x*II ]v*(QTx)] < 

<_ ][P* z*IIv(PT ) + ][Q* z*IIv(QT ) < v(T), 

a contradict ion.  Thus  our  claim is proved, so 

v(PT) = ]x*(Tx)l = [x*(PTx)[ 

and  we have  shown tha t  P T  at ta ins  its numerical  radius. 

Let  us finally show tha t  iii) holds. If  (y, y*) 6 I I (Y)  and  z 6 B z ,  it is plain tha t  

y*(PT(y + z)) belongs to the numerical  range  of P T  (just  take x = y + z • Sx  

and consider y* as an element  of X* vanishing on Z,  then  (x,y*) • I I ( X ) ) ,  so 
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only one inequality requires a proof. For fixed (x,x*) E II(X) we must find 

(N,Y*) E If(Y), z E Bz such that 

[x*(PTz)I < ly*(PT(y + z))[ 

and we can clearly assume that P'x* ~ 0. Then 

P'x* 
I = llp.x.li(x) <_ [P*x'](x) = x*(Px) < HPxll ~_ lixH = 1, 

so we have (y,y*) E If(Y) where y = Px and y* is (the restriction to Y of) 
P* z* ~ .  By taking z = Qx we get 

tx*(PTx)] = I[P* x*](PTx)I < ly*(PTx)] = ly*(PT(y + z))l, 

as required. • 

Two direct consequences of the above lemma will be useful for us. First, if 

X is as in the lemma and an operator T ~ 0 satisfying T = PT is the limit in 

norm of a sequence {Tn} of operators in R(X), then the sequence {PTn} also 

converges to T while {QTn} converges to zero, so we will have 

v(Tn) = v(PTn) > v (QT, )  and PTn E R ( X )  

for large enough n, and we can assume that PTn = Tn for all n, from the 

very beginning. Second, the numerical radius of operators T satisfying P T  = T 

only involves the set II(Y), which is simpler than II(X). We now give an easy 

description of II(Y) for the kind of space Y we are interested in. 

LEMMA 1.3: Let (Yo, J[. [[) , (H, [l" [1) be Banach spaces and W a one-to-one 

bounded linear operator from Yo into H. Define an equivalent norm [. [ on Yo by 

lyl = Ilyll + IlWyll 

and let Y denote the new Banach space obtained in this way. Then 

i) The duai norm l" I on Y* is given by 

ly*l = min{max{ l ly*  - W*h*ll ,  IIh*ll} : h* ~ H * } ,  

for all y* in Y*. 
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Proof: i) This follows from a standard dualization argument. The mapping 

(I) : Y --* Y0 × H given by 

• (y) = (y, w y )  

is an isometric embedding when Y0 x H is normed by 

[[(y, h)[[ = [[y[[ + [[h[I (y E Y0, h e H), 

so the mapping u + ¢(Y)° ---* @*(u) is an isometric isomorphism from (Y0 x 

H)*/@(Y) ° onto Y*. Since 

~*(u*, h*) = u* + w ' h *  

we have 

(y* e rg,h* e H*), 

[y'[ = [[(y',O) + ¢(Y)°H, 

and the result follows by using that (Yo × H)* ~- Y0* ~o~ H* and 

• (Y)° = ker~* -- {(-W*h*,h*): h" e H*}. 

Note that the infimum defining the quotient norm is attained, for ~ (y)o  is a 

w*-closed subspace. 

ii) Given y E Sy and y* E D(y), let h* E H* be such that 

max{l[y ° - W*h*l[, [[h'H} = 1 

Then we have 

1= Re y*(y) = ,,y,,Re [y* - W*h*] ([-~-y[[) + ,,Wy,[Re h* ( WH~yH) <_ 

_< Ilyll [[y* - w*h*H + IIwylf IIh*ll < 

<- ([[YI[ + I[WYI[) max{]lY" - W'h'l[, ][h*l[} = 1. 

It follows that y* - W'h* E D Yo, y and h* G D H, 
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Conversely, if y • Sy and y* = u* + W'h* with 

u* E D Yo, y and h* • D H, , 

we have 

91 

ly*l < max{l ly" - W*h*l l ,  IIh*l]} = 1 

and 

so ly*l = 1 and y* e D(Y ,u ) .  • 

2. T h e  c o u n t e r e x a m p l e  

Notation 2.1: Consider the diagonal operator W from co into 12 satisfying 

(1)  w ~ .  = p .  h .  

where {en} and {hn} are the unit vector bases of c0 and h respectively, and {pn} 

is a fixed sequence of positive numbers in l~. W is clearly a one-to-one bounded 

linear operator. We will denote by Y the space co when provided with the norm 

l" 1 defined by 

lyl = Ilyll + IlWyll = 

(5 (2) = max{ly(n)l : n e IN} Jr O~ lY(n)l 2 
n = l  

Now we consider the space X = Y ~oo co, whose norm is defined by 

(3) I ly+zll  = max{lyl, llzll } (y • Y ,z  • co) 

We want to prove that R(X)  is not dense in L(X) .  To this end we consider 

operators A • L(Y) ,  B • L(co, Y)  and define T • L (X)  by 

(4) T(y + z) = Ay + Bz  (y • Y, z • Co). 

Note that this is the general form of an operator on X satisfying that  T ( X )  C_ Y,  

equivalently P T  = T where P is the projection from X onto Y. 
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Our proof will easily follow from a satisfactory answer to the following question. 

If the operator T given by (4) attains its numerical radius, what can be said about 

A and B? 

To motivate our arguments, assume that T attains its norm, so that there are 

vectors Y0 E B y  , zo E Bco, such that 

lay + Bzl < lay0 +Bz01 

1 
for all y E B y ,  z E Bc,. For large enough n we have [Iz0 4- ~e'`[[ _< 1, hence 

1 
IA~0 + B,0 4- ~Be'`l _< lay0 + B*01. 

The strict convexity of Y implies that Be,, = 0 , so B is a finite rank operator. 

Now, if we only assume that T is the limit in norm of a sequence {T'`} of norm 

attaining operators, since P T  = T we can arrange that PTn = T'` for all n, so 

the above argument applies to each Tn and this time we get that  T is compact. 

With minor changes this was the argument used by J. Lindenstrauss in [16; 

Propositions 4 and 5] to show that the set of norm attaining operators on X is 

not dense. 

What  happens if we instead assume that T (always given by (4)) attains its 

numerical radius? Well, in view of Lemma 1.2, there are (y0, y~) E II(Y), z0 E Boo 

such that 

* A  * A  (5) Iv ( ~ + Bz)l < lY0( ~0 + Bz0)l 

for all (y,y*) E II(Y), z E Be0. As in the previous argument we find a natural 

number p such that IIzo 4- ½e'`ll < 1 for n > p and we get 

* A  1 * A  lUo( U0 +Bzo  4- ~Be,,)l < lY0( Y0 +Bz0)l .  

The scalar field is certainly strictly convex, so we have 

y~(Ben)=O for n>__p, 

in other words, the sequence B*y~ E 11 has only finitely many nonzero terms. 

This seems to be a very poor information, note that we intend to put the terms 

of a convergent sequence in place of T and try to get something about the limit 

operator, but the pair (y0,y~) as well as z0 (hence also p) depend on T and 

will change with T, probably without control. Nevertheless, this small piece of 

information will be crucial to our proof, so it is worth pointing it out. 
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FACT 2.2: If the operator T defined by (4) attains its numerical radius and 

(y0, y~) E H(Y), z0 E Be0 are such that 

ly~(A~o + Bzo)l = v(T), 

then 

B*yg(en) = 0 

for large enough n. 

Let us go back to (5) in order to get some further information. For fixed 

(Y,!I*) 6 l'ICY ), by rotating z we can arrange that 

ly*(Ay + Bz)l = ly*(Ay)I + ly'(Bz)l, 

so we actually have 

ly*(ay)l + ly*(Bz)l _< lu;(ayo + Bzo)l, 

and this still holds for all z in Be0. By taking the supremum over z we get 

ly*(Ay)I + IIB*y*II < ly~(Ayo + Bzo)l, 

and this is our second piece of information. 

FACT 2.3: Under the assumptions of Fact 2.2, we have 

(6) ly*(Av)I + IIB%*II _< ly;(.A~'o)l + IIB%~,II 

for all (v, y*) in n(y) .  
Let us explain in advance how the above two facts will entrain severe restric- 

tions on the operators A and B. More concretely, if the norm of A is small, then 

B cannot be close to the formal identity from co into Y. Why is this so? We know 

that B*y$ is a quasi-null sequence in I1, hence if we move a bit from y~ in the 

direction of e,~ with large enough n ( {e~ } is the sequence of biorthogonal func- 

tionals to the basis {e~}), so that we get the point y* = y~+ee* (e small), and B 

is close to the identity (B*e~, is close to e~,), then liB*y*]] will increase (roughly) 

• . In view of (6) this increasement has to be compensated by a decreasement of 

ly*(Ay)l, but it can be expected that also y moves in the direction of e , ,  so that  

the decreasement of ]y*(Ay)[ should be of the order e(ly$(Aen)l + le;(Ayo)l) 
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which is much  smaller  than  e when n is large, for {en} is a weakly null sequence 

and  {e~,} is w*-null. To measure  the ra te  of increasement  of [[B*(.)[[ we use radial  

derivatives of  t h e / 1 - n o r m ,  so we need B*y~ # 0 but  this condit ion holds when 

the  n o r m  of A is small  enough. To carry  over this kind of a rgument  in a serious 

and  successful way, several obstacles have to be  overcome and  checking all the  

detai ls  will be  quite cumbersome.  Unfor tuna te ly  we cannot  move f rom y~} in an 

a rb i t r a ry  direction while s taying in I I (Y) ,  wha t  we can do is moving  f rom y0 in 

the sui table  direction and  t ry  to arrange things so tha t  y* moves in the  r ight  

way. It  is a l ready t ime to s tar t  with our  homework.  

Assume tha t  the opera to r  T defined in (4) a t ta ins  its numerical  radius  and  fix 

a pa i r  (Yo,Y~) • I I (Y)  satisfying (6). Let us write r = [[Wyo[[ , [[Yol[ = 1 - r ,  

and  consider the set 

(7) A = {n • IN: [yo(n)[ = 1 -  r} 

This  is a finite set and  we have 

:= max{iyo(n)l:n it A} < I - r .  

Now we fix an element e • Y such tha t  

(8) e ( n ) = 0  for R • A ,  

choose 6 > 0 with # + 6][e[[ < 1 - r and  write 

¢( t )  = Iv0 + tel u, = v0 + te , ¢(~---y- • s t ,  

f o r 0 < t  < 6 .  

If  n E A we have 

[yt(n)[ = ¢(t)  -1 [yo(n)] = (1 - r)  ¢( t)  -1 

while if n it A, 

M(n)[ < ¢(t)- '  (~ + 6lIell) < (1 - r)  ¢ ( t ) - ' .  

I t  follows that IlYtll = ( 1 - r ) ¢ ( t )  - I  , llWy, ll = ¢( t ) -1(¢( t )  - l + r )  and lyt(n)l  = 

][y,[[ if and only if n E A. Thus,  Yt is a small  pe r tu rba t ion  of Y0 whick ~ a l u ~  it~ 
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norm I1" II at the same coordinates as y0, the variation of Ilu, II and IIWu, II being 

controlled by the function ¢(t). 

Now we use Lemma 1.3 to see how y~ looks like, hence how it should be 

perturbed to get elements y[ such that (Yt ,y~)  E II(Y) for 0 < t < 6. Hopefully 

this perturbation will be smooth enough as a function of t. For h E Iz we will 

denote by h* the functional (-Ih), where ('l ') is the inner product on Iz. In 

particular {hl} is the sequence of biorthogonal functionals to the unit vector 

basis {h,}.  Note that  h ~ h* is the canonical (conjugate linear in the complex 

case) identification of 12 with its dual. Also D ( H ,  h) = {h*} for h E S~2. By 

Lemma 1.3, y;  has the form 

( Yo*=Uo+* W * h  o* where u 0*ED co, and h 0 =  rWY°" 

A quick look at the support functionals for the unit ball of co in its usual norm 

and we realize that u~ must have the form 

(9) . x - - . .  ly0(~)le, 
u° : Z~r/ Y o ~  n 

nEA ~ k I 

where q,, >_ 0 for n E A and ~ 7/. = 1. Since 
i 

nEA 

ly,(-)l ly0(n)l 
y , ( - )  uo(~) 

for all n E A, we have the nice fact that u~ also works for Yt (this was the reason 

to impose on e the restriction (8)), hence we can define 

, . . , W y t  
Yt = Uo + W h t where ht = 

IlWy, II 

and we have (yt,y~) E II(Y) for 0 < t < 6. Note that 

ht - W(yo "4- te)  _ rho + th  where 
¢( t )  - I + r  ¢ ( t ) -  I + r 

h ~ We~ 

so we can write 

( lo)  ~;' = y,; + t w *  k,* 
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where  

k, = t - l ( h ,  - ho) = (~(t)  - 1 + r ) - '  ( h  

for 0 < t < 6 and, what is most important 

(11) l im k t  = r - l ( h  - ~b'(0) h0) = :  k0 
t.-,O + 

in the norm topology of 12 (actually the kt's live in the two-dimensional subspace 

of 12 generated by h and h0). 

The computation of ~'(0) is not difficult, 

~b'(0) = lim lY0 + tel - 1 
, -o+ t = r(y0, e) = 

= max Re {[u~ + W*h~](e):  u o E D co, } = Re W*h~(e),  

where, for the last equality, we have used the general form (9) of an dement  in 

D(c~ ~ ~ and, once more, the restrictions on e (8). Thus, we have \ u, l - - r /  

(12) ~ ' (0 )=  Re (hlho) 

and (11) reads 

(13) k0 = r - ' I h  - Re (hlho) h0]. 

Fortunately, y~ is a perturbation of y~ which is a smooth function of t, as shown 

by (10) and (11). 
It is time to compute the variations of lu*(Au)l and IIB'y'll when we move 

from the pair (y0,Y~) to (yt,y~). For the first one we have 

= *A ~(t) ~7(A~,) y, [ (u0 + ,e)] = 

(14) = ~;(Ayo) + t [W'kT](A~o)+ 

+t g(A~) + t~ IW'k~](A,) 

Consider the scalar valued function F,( t)  defined for 0 < t < ~ by 

* A  F,( t )  = u , ( u , ) .  
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In view of (14), (11) and (12), F1 is differentiable at the origin with 

(15) F~(O) = [W*k~)](Ayo) + y~(Ae) - Re (hlho) y;(Ayo) 

On the other hand we have the function F2 : [0, 6] ---* 11 defined by 

F 2 ( t ) =  * * * * * * * = B W  kt, B Yt B Yo + t 

which is also differentiable at the origin, with 

(16) F~(0) = B*W*k~. 

By Fact 2.3, we have 

(17) IFa(0l + Ilf2(0Jl _< IFl(0)l + JlF~(0)ll (0 < t < 6) 

Assume for the moment that 

* A  (18) FI(O) = Yo( Yo) # 0 and F2(O) = B*y~) # 0 .  

By differentiating in t = 0 and using Lemma 1.1 for the derivative of the function 

t --~ HF2(t)]I, we get from (17) that 

~,F~('IFI(O)I F':n,'~,,,:j (' F~(O) ) 
(19) Re +~\IIF--~-@I ' F~(0) _<0, 

where the function r must be calculated in 11. 

Recall that all the above arguments depend on a fixed vector e 6 Y which only 

satisfies (8). Let us see what is the effect of replacing - e  for e. In view of (13), 

k0 (hence also k~) changes its sign, so (15) tells us that also F~'(0) changes its 

sign. Therefore, by summing up (19) and the corresponding inequality for - e  we 

get 

~ \ II-b-:~u~ll ' IIB*y~II ' 

(actually we get only one inequality, but the subadditivity of r in the second 

variable gives the other). 

The last trick will be to take for e a suitable element in the unit vector basis 

of Y, that is, e = e ,  with n ~ A, so that the requirements (8) are fulfilled. Then 

h = Wen = p ,h , ,  so (13) gives 

ko r - l ( p ,  h n -  --1 2 = r p .  R e  yo(n) ho) 
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and 
2 

We now put this value of k~ in (20), divide by p2 and let n ~ oo. Since {y0(n)} --¢ 

0 and r is a continuous function in the second variable, we get 

.) :)1 lim \ l  VlB-~vn°,ll , B*e + Vo - B * e  = 0 (21) 
- - ~  llB*v~ll ' 

This is the point where Fact 2.2 will play its important role. Since the sequence 

B*y~ has only finitely many nonzero terms, we can find a z E Sco such that 

[B*vffl(z) = IIB*v~II and z(n) = O, provided that n is large enough. For any 
B*-* \ 

s c a l a r ,  with [#l = 1 we have that z + pen e D l,, II-.o.UB--~-°'ll) (consider z + e .  

as elements of loo ~ 1;), so 

( B * - *  ) Y0 B 'e*  Re[B* e~](z + pe , )  <_ r IlB*u~ll ' 

and 

-Re[B* e*nl(z - pen) <_ r IIB*y$11 ' 
It follows from (21) that 

lim Re [B* e*](IJen) = 0 
n - " ~ O O  

so we have finally shown that {e.~,(Be,)} ~ 0, and it is now pretty clear that B 

can not be close to the identity operator from Y onto co. 

The above arguments are valid under the assumptions (18) that y~)(Ayo) # 0 

and B*y~) # O. The first one is easy to remove. If y~)(Ayo) = 0, instead of (17) 

we have something better, 

IIr2(0[I < IFl(t)l + [IF2(0l[ < 115'2(0)11, 

so we simply forget about the function F1 and differentiation in the above in- 

equality leads directly to (20). On the other hand, the assumption B*y~ ¢: 0 is 

crucial to our argument. To be sure that this condition is satisfied we simply 

impose an additional restriction on the operator T. By Fact 2.3, if B*y~ = 0, we 

have 

IIU*v*ll < Iv*(Av)I + lIB*v'l[ < Iv;(Av0)l < I[All, 

and this holds for any norm attaining functional y* E St*.  By the Bishop-Phelps 

Theorem [6] this implies IIB]I _< IIAII. Therefore, we have proved the following. 
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PROPOSITION 2.4: Let Y,  X be the Banach spaces defined in 2.1, let A • L(Y),  

B • L(co, Y) satisfy IIAII < IIBll and consider the operator T E L(X)  defined by" 

T ( y + z ) = A y + B z  ( y • r ,  z • c o )  

If  T attains its numerical radius, then 

lim e*,,(Be,,) = 0 
11"--'OO 

where {e,} and {e~,} denote the unit vector bases of co and 11, respectively. 

Our main result follows easily from the above proposition. 

THEOREM 2.5: Let X be the Banach space defined in 2.1. Then the set of 

numerica/radius attaining operators is not dense in L( X)  for the norm topology. 

Proof." Consider the operator S • L(X) given by 

s(~  + z) = X(z) (y • Y ,  z • co) 

where I • L(c0, Y) is the identity operator. If P and Q are the projections from 

X onto Y and Co respectively, we have clearly S = PS. We prove that S can not 

be approximated in norm by elements in R(X).  

Assume, on the contrary, that Tk • R(X)  for all k and that the sequence {Tk} 

converges in norm to S. Then {PT~} also converges to S and {QTk} ~ O, hence 

{v(PTk)} ---+ v(S) > 0 and {v(QTk)} ---+ O. It follows that v(PTk) > v(QTk) for 

large enough k and, by Lemma 1.2, we have that PTk E R(X),  also for large 

enough k. Thus we can assume that PTk = Tk, so that Tk has the form 

T~(y + z) = Aky + Bkz (y • Y , z • co) 

where Ak E L ( Y ) ,  Bk E L(c0, Y), for all k. The definition of S implies that 

{Ak} --* 0, while {Bk} ~ I, so IIAkll < IIBkll for k > k0 (say). From the above 

proposition we obtain that 

Then from 

lim e*(Bke,) = 0 (k > ko). 
n ' - ' *  OO 

I = ~(x~) ~ l:~(Bk~)l + llBk - 111, 
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b y  l e t t i n g  n ~ co  w e  d e d u c e  that  {{Bk - I]1 > 1 for k > k0, a c o n t r a d i c t i o n .  
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